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Abstract - In the present paper, analytical solutions are obtained using perturbation expansion in powers of 
Grashof number for steady, axisymmetric flow of a viscous fluid contained between two concentric spheres. A 
uniform gravity field acts vertically downward. The outer sphere is assumed to be maintained at a variable 
temperature such that conditions for vertical stratification are satisfied. Analysis is presented for two cases: 
when a constant-heat-flux condition on the inner sphere surface is imposed or when its surface temperature is 
kept constant. Streamlines, isotherms and velocity components are shown graphically in an axial plane for 
each case. For the case of isothermal inner sphere, a dimensionless stratification parameter S governs the 
flow. Solutions for S = 0 correspond to the unstratified case. When S tends to infinity, the flow pattern has 
both vertical and horizontal symmetry. But when the inner sphere surface is kept at constant heat flux, the 
flow and temperature fields are governed by another dimensionIess parameter Q, The case Q = 0 
corresponds to thermally insulated inner sphere. For this case, flow is similar to that occurring when S tends 

to infinity, but the directions of the streamlines are reversed. 

NOMENCLATURE 

All primed quantities are dimensional ; all unprimed 
quantities are dimensionless. Subscripted terms with m 
denote their corresponding values at the diametral 
plane (y’ = 0, 0 = 42). 

acceleration of gravity; 
square root of modified Grashof 
number [g’ 8’ ri4 (d7”T’,/dy’)]1’Z/v’; 
thermal conductivity; 

Gegenbauer functions of the first kind 
and of order m ; 
local Nusselt number on the inner 
sphere; 
Legendre polynomiaIs of the first kind 
and of order n ; 
ratio of the inner sphere constant heat 
flux (3T’/&‘)_, to (dT’,/dy’); 
radial coordinate r = r’/rf ; 
radii of the inner and the outer spheres ; 
ratio i-b/r:; 
steepness parameter defined as {r& 
(dT”,/dy’)} divided by the temperature 
difference between inner sphere and the 
fluid occupying the diametral plane ; 
temperature T’ = T:, + rf(dT’,/dy’)T; 
constant tem~rature gradient describ- 
ing the constant stratification; 
r-component of velocity v, = vi rj/v’G; 
B-component of velocity ug = vb r;/v’G; 
y’ = r’ cos 0, y = y’,/rf = r’ cos O/r!. 

Greek symbols 

thermal diffusivity; 
volumetric coefficient of thermal 
expansion ; 

colatitude or polar angle measured from 
the upward vertical t3 = 0; 
density; 
kinematic viscosity; 
Stream function $ = t,V/Gv’. 

1. INTRODUCTION 

FREE convection heat transfer in spherical annulus has 
been the subject of many investigations. Bishop, 
Kolflat et al. [l] were first to present the flow 
visual~tion studies depicting three different con- 
vective flow patterns of the fluid (air) contained 
between two isothermal concentric spheres: two 
steady patterns, the crescent eddy and the kidney- 
shaped eddy types, and one unsteady pattern, falling 
vortices type. These flow patterns depended on the 
low-to-large-diameter ratio of the spheres and mod- 
erate to large tem~rature differences. In additional 
papers [2-41, measured temperature profiles were 
analyzed and overall heat-transfer rates were cor- 
related. Yin, Powe et al. [5] performed experiments 
concerning natural convection between two con- 
centric spheres, the inner one being hotter. The 
conv~ting fluids were air and water. Observed flow 
patterns were correlated with previously published 
temperature profiles and were categorized in terms of 
steady and unsteady regimes. The results of a flow 
visualization study of natural convection in air be- 
tween a heated sphere and its cooled cubical enclosure 
were reported by Powe, Scanlan and Eyler [6]. Mack 
and Hardee [7] calcuiated the first three terms of the 
perturbation solution for natural convection between 
concentric spheres in powers of Raleigh numbers, 
Streamlines, velocity and temperature distributions 
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were presented for Raleigh number equal to 1000 and 
Prandtl number P equal to 0.7. 

Experiments on natural convection from isothermal 

spheres and cylinders immersed in a thermally stra- 
tified fluid were performed by Eichhorn, Lienhard and 

Chen [8]. Heat-transfer results and visual obser- 

vations of the flow field were presented for various 
values of the steepness parameters S. Hubbel and 

Gebhart [9] made observations on convective trans- 

port and plume shedding induced by a heated horizon- 

tal cylinder submerged in quiescent, salt-stratified 

water. Chen and Eichhorn [lo] studied both analyti- 

cally and experimentally natural convection from an 
isothermal finite plate immersed in a stable thermally 

stratified fluid. Local and overall heat-transfer coef- 
ficients, velocity and temperature profiles were given 

for Prandtl number equal to 6. Natural convection 
problems from simple bodies immersed in thermally 

stratified fluids have recently been reviewed in a report 

prepared by Chen and Eichhorn [ll]. They gave a 
design for an enclosure to produce quickly and reliably 
a thermally stratified environment, a problem which is 

not as simple as it first appears to be. In the report 
overall heat-transfer rates and a limited study of the 
behavior of thermal plumes from immersed horizontal 

cylinders and spheres in stratified fluids were pre- 
sented. Results based on an approximate boundary 
layer analysis using local nonsimilarity and series 
solution methods compared reasonably well with 

those of experiments. Singh [12] obtained analytical 
solutions for axisymmetric flow of a vertically stra- 

tified viscous fluid by the singular perturbation tech- 
nique valid for small Grashof numbers. 

Free convection between horizontal concentric cyl- 

inders was considered by Singh and Elliott [ 131 when 
the outer cylinder is assumed to be maintained at a 

variable temperature such that conditions for vertical 

stratifications are satisfied. The inner cylinder is either 

thermally insulated or its surface temperature is kept 

constant. Theoretical solutions were obtained in 
power series of Grashof number G and streamlines, 
isotherms and velocity profiles were plotted for vari- 
ous values of the steepness parameter S. In this paper 

the perturbation solution is extended for the free 
convection problem between two concentric spheres. 
Isotherms, streamlines and velocity components are 
shown graphically in an axial plane for various values 
of the two dimensionless parameters Sand Q and for P 

= 0.7, G = 2, the radius ratio R = 2. When the inner 
sphere surface is kept at a uniform temperature, details 
of the fluid motion are dependent on the steepness 
parameter S. Local Nusselt numbers on the inner 
sphere Nu, are calculated and the ratio (NudNu,=,,) is 
plotted vs. 0 for various values of S. In the case of the 
inner sphere maintained at constant heat flux, the 
parameter Q governs the flow. Streamlines and ve- 
locity components, which are qualitatively similar to 
those in concentric horizontal cylinders [ 131, are also 
analagous for various values of both parameters S and 
Q’, but the flow directions are reversed. 

2. MATHEMATICAL FORMULATlON AND PERTURBATION 
SOLL~TIOY 

A viscous, incompressible fluid occupies the region 
between two concentric spheres of radii ri and r& The 
flow is symmetrical about a vertical diameter which is 

taken as the axis 0 = 0 of spherical polar coordinates 
(r’, 6, 4) with the origin at the center of the spheres. A 

uniform gravity field is acting vertically downward and 
hence all quantities are independent of @. The inner 

sphere is either kept at a constant temperature T: or is 

maintained at constant heat flux. The outer sphere 
surface is maintained at a variable temperature 7’;) 

such that vertical stratification is satisfied, i.e 

‘i-i, = 7‘:, + (dT’,/dy’)rb cos 0. v = F’ cos 0. (1 j 

The velocity components are related to stream func- 
tion $ as given by: 

d*/au ?*i?r 
1:, = ~-.-, 

r2 sin fI 
1’* = - ~_~, 

I’ sm fl 

Introducing the Boussinesq approximation 1141 

P’ P:, 

P:, 
= - B(T’ - CA 

T’ = Th + (d T’, /dy’)ri 7 

into the NavierrStokes equations, we get for 
steady, axisymmetric motion [7, 121: 

where 

12) 

(3) 

the 

(41 

(5) 

The boundary conditions in view of (1) and (3) are : 

a* 
II/=z=O,T=Rcos@atr=R. (7) 

For a given radius ratio R, the solution of (4) and (,5) 
subject to conditions (6) and (7) depends on three 
parameters, P, G, and S or Q. It is obtained in power 
series of G when P and S or Q are assumed fixed 

IL = ti&, 0) + Wl(r, 8) + G’q2(r, 8) + (8) 

T = T&r, U) + GT,(r. 0) + G’T,(r, 0) + (9) 

Substitution of (8) and (9) gives for the zeroth power of 
G: 
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L14& = 0, V’T, = 0. (10) 

Since $ and a$/& both vanish at r = 1 and R, I/I,, is 

zero throughout. Similarly T,, T, . and $2, ti4.. . are 
zero. The solution for T, satisfying (6) and (7) is: 

or 

(12) 

Equations (11) and (12) represent the solution for the 

isothermal and constant heat flux inner sphere cases, 
respectively. For thenext approximation, when (8) and 

(9) are substituted into (4) and (5), we get: 

R sin’0 
D4$, = ~ - 

3R3 sin* 0 cos 0 

S(R - 1)r (R3 _ l)r2 ’ (13) 

and 

D411/ = -Qsin’O 3R3sin20cos0 
1 

r + (2R’ + l)r2 ’ (14) 

Thesolution of(13) or (14)satisfying $I = a*,/& = 0, 
both r = 1 and r = R, is: 

ljll = (B,r4 + DIr3+B2r2+B3r+B4/r)sin20 

+ (C, r5 +C2 r’ +Co r2 +C, +C4/r2) sin2 OcosO (15) 

where 

B, = D,(2R7-6R6+4R5+4R4-6R3+2R2)/B, 

B, = D,(2Rg - 12R’ + 10R6 + 10R5 - 12R4 + 2R2)/& 

B, = D,(-3Rg+8R8-5R7-5R5+8R4-3R3)/B, 

B4 = D,(R’-4R8+6R7-4R6+R5)/Bo 

B, = -4RB+9R7-10R5+9R3-4R2 

D, = - R/8S(R - 1) for isothermal inner sphere 

= Q/S for constant heat flux 

and 

Co = SR3/8(R3 +6) 

C, = C,,(R’-6R5+5R4+5R3-6R2+1)/C, 

C, = C,( - 3Rg + 10R’ - 7R4 + 10R2 -3)/C, 

C, = 2C0 - 3.5C1 -2.5C2 

C4 = 2.5C, + 1.5C2 + C,, 

C, = 2R’“-12.5R7+21Rs-12.5R3+2 

and 6 is equal to - 1 when the inner sphere tempera- 

ture is constant and 0.5 when the sphere is at constant 

heat flux. 
Similarly, expressions for T, and 1//’ can be obtained 

by making use of (4), (5), (1 l), (12), and (15) as given by 

the following 

Tz(r, 0) = i f.(r) P, (cos 0) 
“=I 

$‘(r, 0) = i F,(r) I, @OS 0) 
flt=l 

where P,(cos 0) and I,(cos 0) are the Legendre poly- 

nomials and Gegenbauer functions of the first kind 

and of orders n and m, respectively [15]. The coef- 

ficients f. and F, are functions of r, R, P and Q, and are 

very long. These are omitted to conserve space; 
readers interested in them are invited to write to the 

authors. 

3. DISCUSSION OF RESULTS 

First of all, we attempt to find what is the maximum 
value of G called G,,, for whidh the two-terms 
expansion solution obtained in powers of G is con- 

FIG. 1. Streamlines and isotherms for S = r’, G = 2, P = 0.7, R = 2. Radial velocity changes sign at .9 = 54.5 
and 125.5”. 
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Frci. 2(a). Streamlines and isotherms for S = 1 1 G = 2. f’ = 0.7, R = 2. Radial velocity changes sign at Q = 18 
and 110 

vergent for R = 2, P = 0.7 and various values of S and 
Q of order unity. As a crude measure of the upper 
bound for convergence Mack and Hardee ([7]. $3.1) 
defined G,,, as that value of Grashof number for 
which the maximum (with respect to position) magni- 
tude of any higher-order term in either series for T and 
IJI equals the maximum magnitude of the appropriate 
lowest-order term To or G$,. The maximum magni- 
tude of r-function coefficients of sin% and sin’0 cos 0 
in (15) are of the order of IO- ‘, whereas the largest val- 
ues of the various coefficients of P,(cos 0) and I,(cos B) 
in the expressions for T,(r,B) and ti3(r,0) are of the 
order of lo-” and 10W4 respectively. Hence, accord- 
ing to the above-mentioned criterion we find that the 
two-term perturbation solution converges for G < 5. 

Behavior of streamlines and isotherms in an axial 
plane is described in detail for fixed values of R( = 2) 
G( = 2), and P( = 0.7) for many values of S ranging 
from zero to infinity. For the steepness parameter S 
tending to zero, constant stratification (dT’,/dy) van- 
ishes and the limit of the solution approaches the 
unstratified case of Mack and Hardee [7]. For this case 

when the inner sphere surface is kept at a temperature 
higher than that of the outer sphere, streamlines 
consist of single cells of’crescent eddy’ type. The flow is 
symmetrical about the vertical diameter 0 = 0, n and is 
upward along the inner sphere (counter clockwise) 
and downward along the outer sphere (clockwise). But 
when S tends to infinitely large values, ‘Ti equals Tb, i.e. 
the inner sphere temperature is equal to that of the 
diametral plane y’ = O(0 = n/2) of the outer sphere. 
Motion in this case is symmetrical about both the 
horizontal (0 = n/2) and the vertical (8 = 0, X) diamet- 
ral planes. The expression for the stream function 11/r 
(1.5) (the dominant term) becomes, since D, = 0 for 
s = % : 

$tl = sin20 co& (Clr5+CLr3 +C,r’+C, +C4/rz).(16) 

The radial velocity component c’, for this case is given 

by [using (4 
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170” 

FIG. 2(b). Streamlines and isotherms for S = 2.5, G = 2, P = 0.7, R = 2. Radial veiocity changes sign at B = 
45 and 118”. 

Streamlines for this case are shown graphically in Fig. 
1. Since 6 = - 1, u, is negative at f3 = 0, positive at 0 = 
n/2 and vanished at 0 = 54.5”. An inflow at the poles 0 
= 0 from the outer sphere to the inner sphere reverses 
into an outflow at the equator 6 = x/2, transition 
taking place at B = 54.5”. Eichho~ et al. [8] observed 
a similar streamline picture for S = 00 in their flow 
visualization for a sphere in a stratified medium. In 
case of two concentric horizontal cylinders, when the 
outer cylinder is maintained at a variable temperature 
of a constant stratification type such as presented in 
this ~~r;Singh and Elliott 1133 find similar stream- 
line behavior for S = 00. 

For finite values of the steepness parameters S(0 
c S < co), streamlines depend on the basis of super- 
position of the two above-mentioned flows for S = 0 
and S = 00. When S is very small, motion in an axial 
plane is symmetrical in the two halves of the annulus 
like that of the unstratified case. But as S is increased 
(perhaps to a value of0.9), the single cell flow changes 

into a double ceil flow and a region of reversed flow 
occurs near 0 = 0. A further increase in the value of S 
moves the angle ofseparation of one cell from the other 
toward 8 = ~12. 

Figures Z(a), (b), (c) show pfots of the streamlines for 
fixed values of R = 2, G = 2, P = 0.7 and for S = 1,2.5 
and 10, respectively. These graphs depict the motion 
discussed above. The velocity components V, and vg are 
shown graphically in an axial plane vs. radial position 
for various values of 8 in Figs. 3 and 4. Radial velocity 
V, vanishes and changes sign at @ = 18”, and 1 IO” for 
S = I, at B = 45” and 118” for S = 2.5 and at B = 53” 
and 123” for S = 10. Meridianal velocity compon- 
ent ug becomes zero and reverses its sign at 0 = 20” for 
S = 1, at 0 = 68” for S = 2.5 and at 0 5 85” for 
S = 10. The local Nusselt number on the inner sphere 
is defined as : 

Nu = - 
R-l i3T __ g-- 

R [ 1 dr r=l’ 
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FIG. 2(c). Streamlines and isotherms for S = 10, G = 2, P = 0.7. K = 2. Radial velocity changes sign at 0 = 5.3 
and 123 

For S = 0, local Nusselt number for the inner cylinder 
Nu,=, can be obtained from the calculations of Mack 

and Hardee [7]. In Fig. 5, is shown the plot of 
(Nu/Nu,=,) vs. U for G = 2 and for various values ofS. 
It is found that Nu decreases with S. 

When the inner sphere is maintained at constant 
heat flux, streamlines and isotherms depend on Q. The 
case Q = 0 corresponds to the inner sphere surface 
being thermally insulated. For this case, D, = 0.6 = 
0.5 and from (12), (14) and (15) one finds that all the 
qualitative features of the flow will be the same as for S 
= cc, but the directions of the flow will be reversed. 
Figure6 shows the sketch of streamlines and isotherms 

for this case. For finite values of Q, flow patterns, radial 
and azimuthal velocity components are shown in Figs. 
7-10. These are similar to those of finite values of S, but 
the flow is in opposite direction. 

For large values of Q, the flow pattern consists of 
single cells of ‘crescent eddy’ type and is similar to that 

for S = 0. But the flow lines are downward along the 
inner sphere (counter clockwise) and upward along the 
outer (clockwise). Isotherms are ah.0 shown graphi- 
cally in Figs. 7 and 8. These are quite different from 
those in which the inner sphere is kept at constant 

temperature. 
Although the detailed solution curves for flow 

pattern and temperature distribution are presented in 
this paper for a small value of the Grashof number 
equal to two, P = 0.7 and R = 2, the influence of 
variation of S and Q on the plume formation on a body 
in a thermally-stratified medium is brought out clearly. 
The plume formations on an isothermal inner sphere 
are in qualjtative agreement with those reported by 
Eichhorn, Lienhard and Chen [S]. But when the inner 
sphere is maintained at constant heat flux, the plume- 
formation analysis has not been experimentally pre- 
sented in the literature and the results obtained in this 
paper seem to be new. 
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Frc. 3(a). Radial component of velocity vs. radial position for 
S = 1, G = 2, P = 0.7, R = 2. o, vanishes and changes sign at 

6 = 18 and 110”. 
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FIG. 3(b). Radial component of velocity vs. radial position for 
S = 2.5, G = 2, P = 0.7, R = 2. v, vanishes and changes sign 

FIG. 4(a). Theta component of velocity vs. radial position for S 

at B = 45 and 118”. 
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S = 10, G = 2, P = 0.7, R = 2. o, vanishes and changes sign at 

0 = 53 and 123”. 
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! T=O 
900 

FIG. 6. Streamlines and isotherms for the case with the inner sphere thermally insulated. S = 0. 

FIG .7. Streamlines and isotherms for Q = 0.1, G 
arKI 1‘3 
= 2, P = 0.7, R = 2. Radial velocity changes sign at B = 
_-_I ,110 
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FIG. 9. Radial component of velocity vs. radial position for Q I-K;. 10. Theta component of velocity vs. radial position for Q 
= 0.3, G = 2, P = 0.7, R = 2. I’, vanishes and changes sign at 7 0.3. G = 2. P = 0.7. R = 2. I‘~ vanishes and changes sign at 

0 = 41 and 119’. 62 

41 



Natural convection between concentric spheres 405 

REFERENCES 

1. E. H. Bishop, R. S. Kolflat, L. R. Mack and J. A. Scanlan, 
Convective heat transfer between concentric spheres, in 9. 
Proc. 1964 Heat Mass Transfer Fluid Mechanics In- 
stitute, p. 69, Stanford Univ. Press (1964). 

2. E. H. Bishop, L. R. Mack and J. A. Scanlan, Heat transfer 
by natural convection between concentric spheres, Int. J. 10. 
Heat Mass Transfer 9, 649 (1966). 

3. J. A. Scanlan, E. H. Bishop and R. E. Powe, Natural 
convection heat transfer between concentric spheres, Int. 11. 
J. Heat Mass Transfer 13, 1857 (1970). 

4. N. Weber, R. E. Powe, E. H. Bishop and J. A. Scanlan, 
Heat transfer by natural convection between vertically 
eccentric spheres, J. Heat Transfer C95, 47 (1973). 12. 

5. S. H. Yin, R. E. Powe, J. A. Scanlan and E. H. Bishop, 
Natural convection flow patterns in spherical annuli, Int. 
J. Heat Mass Transfer 16, 1785 (1973). 13. 

6. R. E. Powe, J. A. Scanlan and L. L. Eyler, Jr., Flow studies 
for natural convection between a sphere and its cubical 
enclosure, Int. J. Heat Mass Transfer 20, 159 (1977). 14. 

7. L. R. Mack and H. C. Hardee, Natural convection 
between concentric spheres at low Raleigh numbers, Int. 
J. Heat Mass Transfer 11, 387 (1968). 15. 

8. R. Eichhorn, J. H. Lienhard and C. C. Chen, Natural 
convection from isothermal spheres and cylinders im- 

mersed in a stratified fluid, in Proceedings of the In- 
ternational Heat Transfer Conference, Tokyo. A.I.Ch.E., 
New York (1974). 
R. H. Hubbell and B. Gebhard, Transport processes 
induced by a heated horizontal cylinder submerged in 
quiescent salt-stratified water, in Proceedings of the Heat 
Transfer Fluid Mechanics Institute, Vol. 14, p. 203 (1974). 
C. C. Chen and R. Eichhorn, Natural convection from a 
vertical surface to a thermally stratified fluid, J. Heat 
Transfer 98, 446 (1976). 
C. C. Chen and R. Eichhorn, Natural convection from 
simple bodies immersed in thermally stratified fluids, 
UKY TRlOS-Me 14-77, College of Engineering, Un- 
iversity of Kentucky, U.S.A. (October 1977). 
S. N. Singh, Free convection from a sphere in a slightly- 
thermally stratified fluid, Int. J. Heat Mass Transfer 20, 
1155 (1977). 
S. N. Singh and J. M. Elliott, Free convection between 
horizontal concentric cylinders in a slightly thermally 
stratified fluid, Int. J. Heat Mass Transfer 22,639 (1979). 
E. A. Spiegel and G. Veronis, On the Boussinesq 
approximation for a compressible fluid, Astrophys. JI 
131, 442 (1960). 
J. Happel and H. Brenner, Low Reynoolds Number 
Hydrodynamics, pp. 134-138. Prentice Hall, Englewood 
Cliffs (1965). 

CONVECTION NATURELLE ENTRE DES SPHERES CONCENTRIQUES 
DANS UN MILIEU LEGEREMENT STRATIFIE THERMIQUEMENT 

R&sum&-On obtient des solutions analytiques en diveloppement de perturbation en puissances du nombre 
de Grashof pour un boulement permanent et axisymetrique de fluide visqueux entre deux sphL?res 
concentriques. Un champ de gravite agit verticalement vers le bas. La sphere extCrieure est maintenue g une 
temptrature variable de telle sorte que la stratification verticale est r6aliste. L’analyse est pr&entCe dans deux 
cas: lorsqu’une condition de flux constant est imposk sur la sphere interieure et lorsque la temperature de 
surface est maintenue constante. Dans chaque cas, on montre les lignes de courant, les isothermes et les 
vitesses dans un plan mtridien. Dans le cas de la sphere inttrieure isotherme, un paramttre adimensionnel de 
stratification S gouverne I’Ccoulement. Des solutions pour S = 0 correspondent au cas sans stratification. 
Quand S tend vers l’infini, la configuration de I’&oulement possede une symitrie a la fois verticale et 
horizontale. Mais quand la sphbe intbieure est maintenue B flux constant, l’koulement et le champ de 
tempkrature sont gouvernes par un autre parametre adimensionnel Q. Le cas Q = 0 correspond $ la sphere 
interne isol6e thermiquement. Dans ce cas, I’&oulement est semblable & celui oti S tend vers l’infini, mais les 

directions des lignes de courant sont invers6es. 

FREIE KONVEKTION ZWISCHEN KONZENTRISCHEN KUGELN IN EINEM MEDIUM 
MIT SCHWACHER THERMISCHER SCHICHTUNG 

Zusammenfassung - In der vorliegenden Arbeit werden unter Verwendung von StGrgliedans&en in 
Potenzen der Grashof-Zahl analytische LGsungen fiir stationlre, achsensymmetrische Stramung eines 
viskosen Fluids erhalten, das zwischen konzentrischen Kugeln eingeschlossen ist. Ein gleichmiifiiges 
Gravitationsfeld wirkt vertikal nach unten. Fiir die PuDere Kugel ist angenommen, daB sie auf variabler 
Temperatur gehalten wird, so da13 die Bedingungen fiir vertikale Schichtung erfiillt sind. Die Untersuchung 
wird fiir zwei Fiille durchgefiihrt : es wird eine konstante Wlrmestromdichte an der Oberfllche der inneren 
Kugel aufgeprlgt, oder deren OberfXichentemperatur wird konstant gehalten. Stromlinien, Isothermen und 
Geschwindigkeitskomponenten werden fiir jeden Fall in einer axialen Ebene grafisch dargestellt. Im Fall der 
isothermen inneren Kugel beherrscht ein dimensionsloser Schichtungsparameter S die Strijmung. Lb;sungen 
fi.ir S = 0 entsprechen dem nicht geschichteten Fall. Wenn S gegen unendlich geht, hat der Striimungszustand 
sowohl vertikale als such horizontale Symmetrie. Wenn jedoch auf der inneren KugeloberflHche konstante 
WHrmestromdichte herrscht, werden die StrGmungs- und Temperaturfelder durch einen anderen 
dimensionslosen Parameter Q bestimmt. Der Fall Q = 0 entspricht ddr thermisch isolierten inneren Kugel. 
In diesem Fall ist die StrGmung ghnlich derjenigen, die sich einstellt, wenn S gegen unendlich geht, aber die 

Richtungen der Stromlinien sind umgekehrt. 
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ECTECTBEHHAR KOHBEK4~~ MEEAY KOH~EHTP~~ECK~~~ CQEPAMM 
B CPEflE CO CJIA6OA TEPMMYECKOfi CTATMWfKA~MEI;I 

AHwoTatw- PdZiJIOxeHtfeM B pan UO ClerteHRM WCna rpaCrO@a nonyreHb1 aHan~Ttfv2CKtie peUtetftfn 

,!L-tR CTaUNOHaptfOrO OCCCHMMeTpW'ftlO~O TWetflllI BR3KOti W(HIIKOCTtf MeX,iy i,ByMH KOHUeHTpR'leCKRMN 

C@paMtf. OJlHOpO~HOe I-paBHTaUllOHHOe "Oite HanpaWleHO BepTNKWbtfO BHtf3. ~~,WtOJlLirLfe-rCSt. ‘ffO 

nepMeHHOii RBZltleTCt3TeMffepaTy$X3 BHeUtH&CI$FZphl,TaX YTO CO3LWOTCF1 yCJtOfliiS iLlR CT~dW@ifKWHH 

B *e~T~K~~b~O~ Han~BneH~~. AHan~3~py~Tc~ ;1Ba CJlyVaS: IlOCTO~HHbI~ Ten,~OBO~ UOlOK. ttO,WO:1M- 

MUit K nOBepXHOCT~ BHyTpeHHd C+pM.U tfOCT0RHHaR TeMnepaTypa nOBepXHOCTH YTOii C&pbL &X 

KIxaO(OTO CJtyWFt ifaH rpa@VfeCKOe ti306pawteHEie JlEiHBfi TOKH. I130TepM H KOMftOHeHT CKOpOc-l-tf Ha 

OCeBOii IL-IOCKOCTH. &t5l ti?OTepMWfeCKOti BHyTpHHd C+epbI TeWHBe KOHTpOJltipyeTCn IlLIpaMeTpOM 

CTp~TW@fKaUWf. PeUteHHe :JJR c-$=0 COOTBeTCTByeT OTCyTCTBWtO CTpaTFi@fKaUtitf. nptf .s. CrpeMR- 

l.UeMCtf K 6CCKOtle~HOCTB. reWHtfe XapaKTeptf3yeTCR KBK BepTtfKaJlbHOt?, TaK tf IOpH'fOHTWlbHOii 

CWMM~T~S~~~~.O~H~KO"~E~~OCTO~~~CTB~T~~Y~OBO~O nOTOKa Ha BHyTp‘ZHHeii C+ep Ftf~pO,Itftt:~MHYeCKHii 

tf TeMnepaTyptfbI~ pGfGi.%N KOHTpOn~py~TC~ IlpyfEfM 6e?pa?MepHtdM IIapaMeTpOM (p) PafleHCTBO 

e= 0 CooT~eTCT~yeTCify~a~TepMN~eCKNA30~R~B~tfHO~BHyTpeHHeijC~pbI. 3~eCbKa~T~~i~ IWetfllil 

aHajlorwftfa rot%. KoTopan tfaBmo.4aeTcn npe S+ x. tto c nporweononomtfbm tianpiitf:letftie>t 

Jt&iH&iii'rOKa, 


